Part Number Hot Search : 
DFP840 LP3311 BC237 OD8226P 4ACT0 KD615 CD1353CP 1SS16
Product Description
Full Text Search
 

To Download KA3030D Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 www.fairchildsemi.com
KA3030D
6-Channel Motor Drive IC
Features
* * * * * * Wide operating supply voltage range: 4.5V ~ 13.2V Built in TSD (Thermal shutdown) circuit Built in protection circuit for under or high voltage Built in mute circuit Built in speed control circuit Built in level shift (V-I converter)
Description
The KA3030D is a monolithic integrated circuit, suitable for a 6-ch motor drivers which drive focus actuator, tracking actuator, sled motor, spindle motor, loading motor and changer of CD system.
28-SSOPH-375
Typical Application
* Compact disk player (CDP) * Video compact disk player (VCD) * Automotive compact disk player (CDP)
Ordering Information
Device KA3030D Package 28-SSOPH-375 Operating Temp. -25C ~ +75C -25C ~ +75C
KA3030DTF 28-SSOPH-375
Rev. 1.0.1 February. 2000.
(c)2000 Fairchild Semiconductor International
1
KA3030D
1 27 2 3 4 5 6 7 26 25 24 23 22
28
DO1A
GND
Pin Assignments
DO1B
DO4B
LO1A
DO4A
LO1B
DI4
DI1
CTL1
DI1A
REFIN
DI1B
VCC1
FIN (GND)
KA3030D
GND
VCC2
LO2A
LO2B
DO2A
DO2B
FIN (GND)
2
21
8 9 10 DI2 11 12 13 14
CTL2
20 19 18 17 16 15
LI2B
LI2A
DI3
DO3B
DO3A
GND
KA3030D
Pin Definitions
Pin Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Pin Name DO1A DO1B LO1A LO1B DI1 DI1A DI1B GND VCC2 DI2 LO2A LO2B DO2A DO2B GND DO3A DO3B DI3 LI2A LI2B CTL2 VCC1 REFIN CTL1 DI4 DO4A DO4B GND I/O O O O O I I I I O O O O O O I I I I I I I O O Pin Function Description Drive output 1A (-) Drive output 1B (+) Logic output 1A Logic output 1B Drive input 1 Logic input 1A Logic input 1B Ground Supply voltage 2 Drive input 2 Logic output 2A Logic output 2B Drive output 2A (+) Drive output 2B (-) Ground Drive output 3A (-) Drive output 3B (+) Drive input 3 Logic input 2A Logic input 2B Speed control 2 Power supply 1 Reference & mute input Speed control 1 Drive input 4 Drive output 4A (+) Drive output 4B (-) Ground
3
KA3030D
Internal Block Diagram
REFIN DO4B DO4A DO3B DO3A
VCC1
CTL1
GND
28
27
26
25
24
23
22
21
20
19
18
17
16
15
D - +
D SW H.V.P + - MUTE T.S.D U.V.P
D +
D -
LEVEL SHIFT
LEVEL SHIFT
+
-
BIAS BANGAP REFERENCE
-
+
+
- IN SPEED CTL IN SPEED CTL
-
+
LEVEL SHIFT - + LEVEL SHIFT LOGIC LOGIC LEVEL SHIFT
LEVEL SHIFT + -
D D D D D IN IN
D D D
1 DO1A
2 DO1B
3 LO1A
4 LO1B
5 DI1
6 LI1A
7 LI1B FIN (GND)
8 GND
9 VCC2
10 DI2
11 LO2A
12 LO2B
13 DO2A
14 DO2B
4
GND
LI2B
LI2A
DI4
DI3
FIN (GND)
CTL2
KA3030D
Equivalent Circuit
Driver input (Except for loading motor driver) Driver output
2.5V 10k
10k 1 2 3 4 11 26
12 13 14 16 17 27 20k
18 10 5 25
0.58k VREF1
Loading motor driver input
Loading motor speed control input
6 7 19 20 10k 10k 21 24 10k
Bias
23
5
KA3030D
Absolute Maximum Ratings (Ta = 25C)
Parameter Maximum supply voltage Power dissipation Maximum output current Operating temperature Storage temperature Symbol VCCMAX PD IOMAX TOPR TSTG Value 18 1700 1 -25 ~ 75 -55 ~ 150
note
Unit V mW A C C
NOTE: 1. When mounted on 76mm x114mm x1.57mm PCB (Phenolic resin material). 2. Power dissipation reduces 13.6mW / C for using above Ta=25C 3. Do not exceed Pd and SOA.
Power Dissipation Curve
Pd (mW) 3,000 2,000
1,000 0
0
25
50
75
100
125
150
175
Ambient temperature, Ta [C]
Recommended Operating Condition (Ta = 25C)
Parameter Operating supply voltage
note
Symbol VCC
Value 4.5 ~ 13.2
Unit V
NOTE: VCC1 (pin 22) VCC2 (pin 9) VCC1 (pin 22) must not exceed VCC2 (pin 9)
6
KA3030D
Electrical Characteristics
(Ta=25C, VCC=8V, unless otherwise specified) Parameter Quiescent circuit current Mute on current Mute on voltage Mute off voltage Under voltage protection High voltage protection Input offset voltage Output offset voltage Max. output voltage 1 Close loop voltage gain 1 Max. output voltage 2 Close loop voltage gain 2 Ripple rejection ratio Slew rate Symbol ICC IMUTE VMON VMOFF VUVO VHVP VIO VOO VOM1 AVF1 VOM2 AVF2 RR SR VIN=2.5V VCC=5V VCC=5V, VIN=0.1VRMS VCC=8V VCC=8V, VIN=0.1VRMS VIN=0.1VRMS, f=100Hz Square waveform, Vout=3Vp-p, f=100Hz VCC=5V, VCTL=2.5V VCC=8V, VCTL=3.5V IL=100mA400mA, High terminal IL=100mA400mA, low terminal VIN=5V, 5V VIN=0V, 0V Conditions Under no load VPIN23=GND Min. 8 2 19 -20 -40 2.4 7.5 4.7 7.5 40 Typ. 11 3 3 9 5.7 9 60 0.8 Max. 14 6 0.5 4 20 40 10.5 10.5 Units mA mA V V V V mV mV V dB V dB dB V/s
FOCUS, TRACKING, SPINDLE, SLED, DRIVE PART (RL=8)
LOADING, CHANGER DRIVE PART (RL=45) Input high level voltage Input low level voltage Output voltage 1 Output voltage 2 Output load changing 1 Output load changing 2 Output offset voltage 1 Output offset voltage 2 VIH VIL VO1 VO2 VRL1 VRL2 VOO1 VOO2 2 2.6 5.2 -10 -10 3.2 6.0 100 100 0.5 3.8 6.8 300 300 10 10 V V V V mV mV mV mV
7
KA3030D
Application Information
1. REFERENCE INPUT & MUTE CIRCUITS Pin 23 can be used as a reference input terminal and a mute terminal. * Reference input circuit An external allowable reference voltage to pin 23 is normally 2.5V. In general conditions, pin 23 is used as the reference input terminal and is good to be used between about 2V-6.5V. * Mute circuit The following represents the conditions when the external mute is permitted to pin 23. Mute voltage Mute on voltage[V] Mute off voltage[V] Min. 2 Typ. Max. 0.5 Device condition Mute Operate
2. THERMAL SHUT-DOWN CIRCUIT
VREF BG
R1 Q R2
Mute control
The setting voltage of VBE VBE = VREF BG x R2 / (R1 + R2) = 400mV Because the thermal coefficient of VBE(Q) is -2mV / 1C and if TR Q reaches 175C from its normal off state (at 25C), VBE for turning on Q becomes 400mV, and then Q turns on and the mute control circuit operates.
8
KA3030D
3. UNDER / HIGH VOLTAGE PROTECTION CIRCUIT
VCC VREF BG V1 R1 + R2 - Q Mute control V2 V3 VR Q Mute control
[UNDER VOLTGE PROTECTION]
[HIGH VOLTAGE]
* * * * * *
[UNDER VOLTGE PROTECTION] Normal state: VBGR = 2.5V < V1 = VCC x R2 / (R1 + R2) Normal state: VZ = V1 + V2 + V3 + VR [HIGH VOLTAGE] Mute state: V1 < VBGR (VCC is below 4V) Mute state: VCC > VZ (VCC is above 20V)
9
KA3030D
4. FOCUS, TRACKING, SPINDLE, SLED DRIVE CIRCUITS
M V1' GV2 - Rref + V1 IC - VREF + V2 - V2'
+
LEVEL SHIFTER
GV1 +-
VREF (pin 23) VIN
GV = 20log (VO/VIN) = GV1 + GV2 = 3.5dB + 6dB = 9.5dB Vref is fixed to 2.5V as the external bias voltage and the input signal through the VIN is amplified to about 9.5dB through two state AMP. In the level shift circuitry, the input signal is transformed into the current so that the voltage V1 and V2 are shifted to V1' and V2' respectively. V1' = V1 + (IC x VREF) = V1 + V V2' = V2 - (IC x VREF) = V2 - V Because V1 and V2 voltages, in their initial state, are equal, the voltage, VM, on the sides of the motor is following VM = V1' - V2' = V - (-)V = 2V Rotation occurs due to 2V voltage difference at both sides of the motor.
10
KA3030D
5. LOADING, CHANGER DRIVE CIRCUITS
OUT1
M
OUT2
D
D
LEVEL SHIFT
VCTL
SPEED CONTROL
LOGIC
IN
IN
VIN1
VIN2
Notes: VCTL: When the motor speed control voltage is permitted between 0V ~ 4V, the motor varies its speed. Between 4V ~ 5V, the motor can be used at constant speed and over 5.8V, the motor should not be used. Furthermore, when VCC = 5V, CTL voltage should not be permitted to exceed 3V
The logic signals, input from the MCU, is inverted in the inverter and can control the changes of the output properties, that depend on the input signal. There properties are shown in the table below. Logic input A Logic input B Output type Logic output A Logic output B Pin 3, Pin 11 Pin 4, Pin 12 Vr Pin 6, Pin 19 Pin 7, Pin 20 H H H L On H(note) L L H On L H Vr L L
Notes: The bias voltage Vr is expressed as below; V CC - V BE Vr = --------------------------- [ V ] 2
11
KA3030D
Typical Performance Characteristics
Vcc vs Icc
8 7 6 5 4
Icc(mA)
12 10 8 6 4 2 0 0 2 4 6
Vre(V)
Vcc vs Vreg
Vcc=vara* Vpad23=2.5V Vpad7=Vcc
8 9 10 11 12 13
3 2 0 2 4 6 8 9 10
Vcc=vara Vpad23=2.5V Vpad7=Vcc
11 12 13
Vcc(V) Av(db)
16 14
Vcc(V) Vo1(V)
6 5
Vcc vs Avf
Vctl vs Vo1
12 10 8 6 4 2 0 0 6 8 9 10 11 12 13
4 3
Vcc=8V Vpad23=2.5V Vpad7=Vcc IL=100mA
2 1 0 2 2.5 3 3.5 4 4.5
Vcc=8V Vpad23=2.5V Vpad7=Vcc Vpad9=5V RL=45Ohm Vctl=Vara
5
5.5
6
Vcc(V)
Vctl(V)
Icc(mA)
14.00 12.00 10.00 8.00
Temp vs Icc
8 7 6 5 4
Vreg(V)
Temp vs Vreg
6.00 4.00 2.00 0.00 -25 -13 0 13 25 38 50 63 75
Vcc=8V Vpad23=2.5V Vpad7=Vcc Vin=0.1Vrms f=1Khz
3 2 1 0 -25 -12.5 0 12.5 25 37.5 50 62.5 75
Vcc=8V Vpad23=2.5V Vpad7=Vcc IL=100mA
Temp()
Temp()
12
KA3030D
Typical Performance Characteristics (Continued)
Temp vs Vom
6 5 4 3
Vom(V)
10 9 8 7 6 5 4 3 2 1 0 -25 -10
Vom(V)
Vcc vs Vom
Vcc=8V Vctl=3.8V Vin=6V /0V RL=45 2-ch logic drive
5 20 35 50 65 75
2 1 0 4 4.5 5 5.5 6 6.5 7 7.5 8 9
Vctl=3V Vin=6V /0V RL=45 2-ch logic drive
10 11 12 13
temp() Vom(V)
7 6 5 4 3 2 1 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Vcc(V)
Vctl vs Vom
Vcc=8V Vpad23=2.5V RL=45
Vctl(V)
13
KA3030D
Test Circuits
VREF 2.5V MUTE
1 TRACKING SW5
2 CHANGER
~ CTL1 10F 8 1 SW6 +2 3 CTL2 IN3
IN4
~ SLED 10F 8 1 3 SW3
2+
28
27
26
25
24
23
22
21
20
19
18
17
16
15
KA3030D
1
2
3
4
5
6
7
8
9
10
11
12
13
14
SW1 1 3 8 45 + IL IL 2 10F IN1 SPINDLE ~ IN2 +2 1
SW2 3 45 8
10F ~
IL
IL
FOCUS
LOADING SW4 2 1 + 1000F RIPPLE ~ + 100F
VCC
14
KA3030D
Test Circuits (Continued)
(Switch condition) Parameter Quiescent circuit current Mute on current Mute on voltage Mute off voltage Under voltage protection High voltage protection Input offset voltage Output offset voltage Max. output voltage 1 Close loop voltage gain 1 Max. output voltage 2 Close loop voltage gain 2 Ripple rejection ratio Slew rate LOADING, CHANGER DRIVE PART Input high level voltage Input low level voltage Output voltage 1 Output voltage 2 Output load changing 1 Output load changing 2 Output offset voltage 1 Output offset voltage 2 VIH VIL VO1 VO2 VRL1 VRL2 VOO1 VOO2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 RL=45 Symbol ICC IMUTE VMON VMOFF VUVP VHVP VIO VOO VOM1 AVF1 VOM2 AVF2 RR SR Switch number SW1 2 2 2 2 2 2 2 2 3 1 3 1 3 1 SW2 2 2 2 2 2 2 2 2 3 1 3 1 3 1 SW3 2 2 2 2 2 2 2 2 3 1 3 1 3 1 SW4 2 2 2 2 2 2 2 2 2 2 2 2 1 2 SW5 1 2 2 2 1 1 1 1 1 1 1 1 1 1 SW6 2 2 2 2 2 2 2 2 3 1 3 1 3 1 RL=8 Remark RL=
FOCUS, TRACKING, SPINDLE, DRIVE PART
15
KA3030D
Application Circuits
SERVO PRE-AMP FOCUS INPUT TRACKING REF & INPUT MUTE SLED INPUT SPINDLE INPUT CHANGER INPUT
CONTROLLER LOADING INPUT CONTROL INPUT
TRACKING
SLED M
VCC1
28
27
26
25
24
23
22
21
20
19
18
17
16
15
KA3030D
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Vcc2
M FOCUS LOADING
M CHANGER
M SPINDLE
16
KA3030D
DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
www.fairchildsemi.com 12/1/00 0.0m 001 Stock#DSxxxxxxxx 2000 Fairchild Semiconductor International
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.


▲Up To Search▲   

 
Price & Availability of KA3030D

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X